
Dependent Intersection:
A New Way of Defining Records in Type Theory∗

Alexei Kopylov
Department of Computer Science

Cornell University
Ithaca, NY 14853, USA

Abstract

Records and dependent records are a powerful tool
for programming, representing mathematical concepts, and
program verification. In the last decade several type sys-
tems with records as primitive types were proposed. The
question is arose: whether it is possible to define record
type in existent type theories using standard types without
introducing new primitives.

It was known thatindependentrecords can be defined in
type theories with dependent functions or intersection. On
the other handdependentrecords cannot be formed using
standard types. Hickey introduced a complex notion ofvery
dependent functionsto represent dependent records. In the
current paper we extend Martin-Löf ’s type theory with a
simpler type constructordependent intersection, i.e., the in-
tersection oftwo types, where the second type may depend
on elements of the first one (not to be confused with the in-
tersection of a family of types). This new type constructor
allows us to define dependent records in a very simple way.
It also allows us to define the set type constructor.

1 Introduction

1.1 Type Theory

We will use the NuPRL type theory [6], which is an ex-
tension of Martin-L̈of’s type theory [16]. Martin-Löf’s type
theory allows dependent types. That is, type expression may
contain free variables ranging over arbitrary types. For ex-
ample, we can form an expressionT [x] = [0..x] which rep-
resents an initial sequent of natural numbers. This expres-
sion is a type whenx ∈ N. (Some notations: we will use

∗This work was supported in part by the DoD Multidisciplinary Uni-
versity Research Initiative (MURI) program administered by the Office
of Naval Research (ONR) under Grant N00014-01-1-0765, the Defense
Advanced Research Projects Agency (DARPA) under Grant F30602-98-2-
0198, and by NSF Grant CCR 0204193.

T [x1, . . . , xn] for expressions that may contain free vari-
ablesx1, . . . , xn (and probably some other free variables),
andT [t1, . . . , tn] for substitution termsti’s for all free oc-
currences ofxi’s).

Martin-Löf’s type theory has the following judgments:
A Type A is a well-formed type
A = B A andB are (intentionally) equal types
a ∈ A a has typeA
a = b ∈ A a andb are equal as elements of typeA

The NuPRL type theory also has subtyping relation. Al-
though it is not essential for our work, we should mention
that membership and subtyping in NuPRL are extensional.
For example,A ⊆ B does not say anything about struc-
ture of these types, but only means that ifx ∈ A then
x ∈ B. As a result the type checking and subtyping are
undecidable. On the other hand, type equality (A = B) is
intensional. We will useA =e B for extensional equality:

A =e B
∆= (A ⊆ B)&(B ⊆ A).

The NuPRL type theory has also an intersection type.
The intersection of two typesA andB is a new type con-
taining elements that are both inA andB. For example,
λx.x + 1 is an element of the type(Z → Z) ∩ (N → N).
Two elements are considered to be equal as elements of the
typeA ∩B if they are equal in both typesA andB.

Example 1 Let A = N → N and B = Z− → Z (where
Z− is a type of negative integers). Letid beλx.x andabs
be λx.|x|. Thenid and abs are both elements of the type
A∩B. Althoughid andabs are equal as elements of the type
N→ N (because these two functions do not differ onN), id
and abs are different as elements ofZ− → Z. Therefore,
id 6= abs ∈ A ∩B.

In Martin-Löf’s type theory types are first-class objects.
There is the universe typeU that contain types that were
formed without using ofU.

Our work is implemented in a setting of the NuPRL type
theory, namely in the MetaPRL system [12, 13] . See the-
oriesitt disect anditt record in Logical Theories

1

in [13]. All proofs except the proof of the semantical The-
orem10 are machine-checked. We believe that most of our
results could be adapted to any type theory that allows bi-
nary intersection and dependent types.

1.2 Records

In general, records are tuples of labeled fields, where
each field may have its own type. In dependent records
(or more formally dependently typed records) the type of
components may depend on values of the other components.
Since we have the type of typesU, values of record compo-
nents may be types. This makes the notion of dependent
records very powerful. Dependent records may be used to
represent algebraic structures (such as groups) and modules
in programming languages like SML or Haskell (see for ex-
ample [3, 10]).

Example 2 One can define the signature for ordered set as
a dependent record type:

OrdSetSig = {t : U; less : t→ t→ Bool}
This definition can be understood as an algebraic structure
as well as an interface of a module in a programing lan-
guage.

Example 3 The proposition-as-type principle allows us to
add the property of ordered sets as a new component:

OrdSet={t:U; less:t→ t→ Bool; axm : Ord(t, less)}
whereOrd(t, less) is a predicate stating thatless is a
transitive irreflexive relation ont. Hereaxm is a new field
that defines the axiom of the algebraic structure of ordered
sets (or specification of the module typeOrdSet).

Example 4 In type theories with equality, manifested
fields ([15]) may be also represented as specification.

IntOrdSetSig = {t:U; less:t→t→Bool; mnf:t=Z}
is a signature wheret is bound to be the type of integers.

From a mathematical point of view the record type is
similar to the product type. The essential difference is
the subtyping property: we can extend a record type with
new fields and get a subtype of the original record type.
E.g. OrdSet and IntOrdSetSig defined above are sub-
types ofOrdSetSig. The subtyping property is important
in mathematics: we can apply all theorems about monoid’s
to smaller types such as groups. It is also essential in pro-
graming for inheritance and abstractions.

Different type theories with records were proposed
both for proof systems as well as for programming lan-
guages ([10, 15, 9, 3, 4, 19] and others). These systems

treat the record type as a new primitive. In the current pa-
per we are interesting in the following natural question:is
it possible to express the notion of records in usual type the-
ories without record type as primitives?This question is
especially interesting for pure mathematical proof systems.
As we saw records are a handy tool to represent algebraic
structures. On the other hand records do not seem to be
the basic mathematical concept that should be included in
the foundation of mathematics. Records should be rather
defined in terms of more abstract mathematical concepts.

It is known that it is possible to defineindependent
recordsin a sufficient powerful type theory that has depen-
dent functions [11] or intersection [21]. On the other hand,
there is no known way to form dependent records in stan-
dard Martin-L̈of’s type theory [4]. However, Hickey [11]
showed thatdependent recordscan be formed in an exten-
sion of Martin-L̈of’s type theory. Namely, he introduced a
new type ofvery dependent functions. This type is pow-
erful enough to express dependent records in a type the-
ory and provides a mathematical foundation of dependent
records. Unfortunately the type of very dependent func-
tions is very complex itself. The rules and the semantics
probably is more complicated for this type than for depen-
dent records. The question is whether there is a simpler way
to add dependent records to a type theory.

In this paper we extend the NuPRL type theory with a
simpler and easier to understand primitive type constructor,
dependent intersection. This is a natural generalization of
the standard intersection introduced in [8] and [20]. Depen-
dent intersection is an intersection oftwo types, where the
second type may depend on elements of the first one. This
type constructor is built by analogy to dependent products:
elements of dependent product are pairs where the type of
the second component may depend on the first component.
We will show that dependent intersection allows us to de-
fine the record type in a very simple way. Our definition of
records is extensionally equal to Hickey’s ones, but is far
simpler. Moreover our constructors (unlike Hickey’s) allow
us to extend record types. For example, having a definition
of monoids we can define groups by extending this defini-
tion rather than repeating the definition of monoid.

1.3 The Set Type Constructor

The NuPRL type theory has a primitive type constructor
for subset types. By definition, the set type{x : T | P [x]}
is a subtype ofT , which contains only such elementsx of
T that satisfy propertyP [x] (see [6]).

Example 5 The type of natural numbers is defined asN =
{n : Z | n ≥ 0}. Without set types we would have to define
N asn : Z × (n ≥ 0). In this case we would not have the
subtyping propertyN ⊆ Z.

2

It turns out that dependent intersection can be also used
to define a set type. This means that dependent intersection
not only adds support for dependent records, itsimplifies
the overall the NuPRL type theory at the same time.

2 Dependent Intersection

We extend the definition of intersectionA ∩ B to a case
when typeB can depend on elements of typeA. Let A be a
type andB[x] be a type for allx of typeA. We define a new
type,dependent intersectionx:A∩B[x]. This type contains
all elementsa from A such thata is also inB[a].

Remark 6 Do not confusethe dependent intersectionwith
the intersection of a family of types

⋂
x:A B[x]. The latter

refers to an intersection of typesB[x] for all x in A. The
difference between these two type constructors is similar to
the difference between dependent productsx:A × B[x] =
Σx:AB[x] and the product of a family of typesΠx:AB[x] =
x : A → B[x].

Example 7 The ordinary binary intersection is just a spe-
cial case of a dependent intersection with a constant second
argument:A ∩B = x : A ∩B.

Example 8 Let A = Z and B[x] = [0 .. x2−5]. Then
x : A∩B[x] is a set of all integers, such that0 ≤ x ≤ x2−5.

Two elementsa anda′ are equal in the dependent inter-
sectionx:A∩B[x] when they are equal both inA andB[a].

Example 9 Let A be {0} → N and B[f] be
{1} → [0 .. f(0)], where {0} and {1} are types that
contain only one element (0 and 1 respectively). Then
x:A ∩ B[x] is a type of functionsf that map0 to a natural
numbern0 and map1 to a natural numbern1 ∈ [0 .. n0].
Two such functionsf and f ′ are equal in this type, when
first, f = f ′ ∈ {0} → N, i.e. f(0) = f ′(0), and second,
f = f ′ ∈ {1} → [0 ..f(0)], i.e. f(1) = f ′(1) ≤ f(0).

2.1 Semantics

We are going to give the formal semantics for dependent
intersection types based on the predicative PER semantics
for the NuPRL type theory [1, 2]. In the PER semantics
types are interpreted as partial equivalence relations (PERs)
over terms. Partial equivalence relations are relations that
transitive and symmetric, but not necessary reflexive.

According to [2], to give the semantics for a type ex-
pressionA we need to determine when this expression is
a well-formed type, define elements of this type, and spec-
ify the partial equivalence relation on terms for this type
(a = b ∈ A). We should also give an equivalence relation
on types, i.e. determine when two types are equal. See [2]
for details.

Γ ` A Type Γ;x : A ` B[x] Type

Γ ` (x : A ∩B[x]) Type

Γ ` A = A′ Γ; x : A ` B[x] = B′[x]
Γ ` (x : A ∩B[x]) = (x : A′ ∩B′[x])

Γ ` a ∈ A Γ ` a ∈ B[a] Γ ` x : A ∩B[x] Type

Γ ` a ∈ (x : A ∩B[x])

Γ ` a=a′∈A Γ ` a=a′∈B[a] Γ ` x:A ∩B[x] Type

Γ ` a = a′ ∈ (x : A ∩B[x])

Γ;u : (x : A ∩B[x]);∆; x : A; y : B[x] ` C[x, y]
Γ; u : (x : A ∩B[x]);∆ ` C[u, u]

Table 1. Rules for dependent intersection

The Extension of the Semantics We introduce a new
term constructor for dependent intersectionx : A ∩B[x].
This constructor bounds the variablex in B[x]. We extend
the semantics of [2] as follows.

• The expressionx : A ∩ B[x] is a well-formed type if
and only if A is a type andB[x] is a functional type
overx : A. That is, for anyx from A the expression
B[x] should be a type and ifx = x′ ∈ A thenB[x] =
B[x′].

• The elements of the well-formed typex : A∩B[x] are
such termsa thata is an element of both typesA and
B[a].

• Two elementsa anda′ are equal in the well-formed
typex : A ∩B[x] iff a = a′ ∈ A anda = a′ ∈ B[a].

• Two typesx : A ∩ B[x] andx : A′ ∩ B′[x] are equal
whenA andA′ are equal types and for allx andy from
A if x = y ∈ A thenB[x] = B′[y].

2.2 The Inference Rules

The corresponding inference rules are shown in Table1.

Theorem 10 All rules of Table1 are valid in the semantics
given above.

This theorem is proved by straightforward application of
the semantics definition.

3

Theorem 11 The following rules can be derived from the
primitive rules of Table1 in a type theory with the appro-
priate cut rule.

Γ ` a = a′ ∈ (x : A ∩B[x])
Γ ` a = a′ ∈ A

Γ ` a = a′ ∈ (x : A ∩B[x])
Γ ` a = a′ ∈ B[a]

Theorem 12 Dependent intersection is associative, i.e.

x : A∩ (y : B[x]∩C[x, y]) =e z : (x : A∩B[x])∩C[z, z]

The formal proof is checked by the MetaPRL system.
We show here a sketch of a proof. An elementx has
type a : A ∩ (b : B[a] ∩ C[a, b]) iff it has typesA and
b : B[x] ∩ C[x, b]. The latter is a case iffx ∈ B[x] andx ∈
C[x, x]. On the other hand,x has typeab : (a : A ∩B[a])∩
C[ab, ab] iff x ∈ (a : A ∩ B[a]) andx ∈ C[x, x]. The
former means thatx ∈ A and x ∈ B[x]. Therefore
x ∈ a : A ∩ (b : B[a] ∩ C[a, b]) iff x ∈ A andx ∈ B[x]
andx ∈ C[x, x] iff x ∈ ab : (a : A ∩B[a]) ∩ C[ab, ab].

3 Records

We are going to define record types using dependent in-
tersection. In this section we informally describe what prop-
erties we are expecting from records. The formal definitions
are presented in Section4.

3.1 Plain Records

Records are collection of labeled fields. We use the fol-
lowing notations for records:

{x1 = a1; . . . ; xn = an} (1)

wherex1, . . . , xn are labelsanda1, . . . an are correspond-
ing fields. Usually labels have a string type, but generally
speaking labels can be of any fixed typeLabel with a de-
cidable equality. We will use thetrue type font for labels.

The selection operatorr.x is used to access record fields.
If r is a record thenr.x is a field of this record labeledx.
That is we expect the following reduction rule:

{x1 = a1; . . . ; xn = an}.xi −→ ai.

Fields may have different types. If eachai has typeAi

then the whole record (1) has the type

{x1 : A1; . . . ; xn : An}. (2)

Also we want the natural typing rule for the field selec-
tion: for any recordr of the type (2) we should be able to
conclude thatr.xi ∈ Ai.

The main difference between record types and products
A1×· · ·×An is the that record type has thesubtyping prop-
erty. Given two recordsR1 andR2, if any label declared in
R1 as a field of typeA is also declared inR2 as a field of
type B, such thatB ⊆ A, thenR2 is subtype ofR1. In
particular,

{x1 : A1; . . . ; xn : An} ⊆ {x1 : A1; . . . ; xm : Am} (3)

wherem < n.

Example 13 Let Point = {x : Z; y : Z} and
ColorPoint = {x : Z; y : Z; color : Color}. Then
the record{x = 0; y = 0; color = red} is not only
a ColorPoint, but it is also aPoint, so we can use
this record wheneverPoint is expected. For example,
we can use it as an argument of the function of the type
Point → T . Further the result of this function does not
depend whether we use{x = 0; y = 0; color = red}
or {x = 0; y = 0; color = green}. That is, these two
records are equal as elements of the typePoint, i.e.

{x = 0; y = 0; color = red} =
{x = 0; y = 0; color = green} ∈ {x : Z; y : Z}

Using subtyping one can model the private fields. Con-
sider a recordr that has one “private” fieldx of the type
A and one “public” fieldy of the typeB. This record has
the type{x : A; y : B} Using subtyping property we can
conclude that it also has type{y : B}. Now we can con-
sider type{y : B} as a public interface for this record. A
user knows only thatr ∈ {y : B}. Therefore he has ac-
cess to fieldy, but access to fieldx would be type invalid
(i.e. untyped). Formally it meant that a function of the type
{y : B} → T can assess only the fieldy on its argument (al-
though an argument of this function can have other fields).

Further, records do not depend on field ordering. For
example,{x = 0; y = 1} should be equal to{y = 1; x =
0}, moreover{x : A; y : B} and{y : B; x : A} should
define the same type.

3.1.1 Records as Dependent Functions

Records may be considered as mappings from labels to the
corresponding fields. Therefore it is natural to define a
record type as a function type with the domainLabel (cf.
[5]). Since the types of each field may vary, one should
use dependent function type (i.e.,Π type). LetField[l] be a
type of a field labeledl. For example, for the record type (2)
take

Field[l] ∆= if l = x1 then A1 else

. . .

if l = xn then An else Top

4

Then define the record type as the dependent function type:1

{x1 : A1; . . . ; xn : An} ∆= l : Label → Field[l]. (4)

Now records may be defined as functions:

{x1 = a1; . . . ; xn = an} ∆=
λl.if l = x1 then a1 else

. . .

if l = xn then an

(5)

And selection is defined as application:

r.l
∆= r l (6)

One can see that these definitions meet the expecting
properties mentioned above including subtyping property.

3.1.2 Records as Intersections

Using the above definitions we can prove that in case when
all xi’s are distinct labels

{x1 : A1; . . . ; xn : An} =e {x1 : A1} ∩ . . . ∩ {xn : An}.
(7)

This property provides us a simpler way to define records.
First, let us define the type of records with only one field.
We define it as a function type like we did it in the last sec-
tion, but for single-field records we do not need dependent
functions, so we may simplify the definition:

{x : A} ∆= {x} → A (8)

where{x} is the singleton subset of typeLabel. Now we
may take (7) and (8) as a definition of an arbitrary record
type instead of (4) and keep definitions (5) and (6). This
way was used in [21] where{x : A} was a primitive type.

Example 14 The record{x = 1; y = 2} by definition (5) is
a function that mapsx to 1 andy to 2. Therefore it has type
{x} → Z = {x : Z} and also has type{y} → Z = {y : Z}.
Hence it has type{x : Z; y : Z} = {x : Z} ∩ {y : Z}.

One can see that when all labels are distinct definitions
(4) and (7)+(8) are equivalent. That is, for any record ex-
pression{x1 : A1; . . . ; xn : An} wherexi 6= xj , these two
definitions define two extensionally equal types.

However, definitions (7)+(8) differ from the traditional
ones, in the case when labels coincide. Most record calculi
prohibit repeating labels in the declaration of record types,

1 We use the standard NuPRL’s notationsx : A → B[x] =
Q
x:A

B[x]

for the type of functions that maps eachx ∈ A to an element of the type
B[x].

e.g., they do not recognize the expression{x : A; x : B}
as a valid type. On the other hand, in [11] in the case when
labels coincide the last field overlap the previous ones, e.g.,
{x : A; x : B} is equal to{x : B}. In both these cases
many typing rules of the record calculus need some addi-
tional conditions that prohibits coincident labels. For ex-
ample, the subtyping relation (3) would be true only when
all labelsxi are distinct.

We will follow the definition (7) and allow repeated la-
bels and assume that

{x : A; x : B} = {x : A ∩B}. (9)

This may look unusual, but this notation significantly sim-
plifies the rules of the record calculus, because we do not
need to worry about coincident labels. Moreover, this al-
low us to have multiply inheriting (see Section4.3.2for an
example). Note that the equation (9) holds also in [7].

3.2 Dependent Records

We want to be able to represent abstract data types and
algebraic structures as records. For example, a semigroup
may be considered as a record with the fieldscar (repre-
senting a carrier) andproduct (representing a binary op-
eration). The type ofcar is the universeU. The type of
product should becar × car → car. The problem is
that the type ofproduct depends on the value of the field
car. Therefore we cannot use plain record types to repre-
sent such structures.

We need dependent records [4, 11, 19]. In general a de-
pendent record type has the following form

{x : A; y : B[x]; z : C[x, y]; . . . } (10)

That is, the type of a field in such records can depend on the
values of the previous fields.

The following main property show the intended meaning
of this type.

The record{x = a; y = b; z = c; . . . } has
type (10) if and only if

a ∈ A, b ∈ B[a], c ∈ C[a, b], . . .

Example 15 Let SemigroupSig be the record type that
represents the signature of semigroups:

SemigroupSig
∆= {car : U; product : car×car→ car}.

Semigroups are elements of SemigroupSig
satisfying the associative axiom. This ax-
iom may be represented as an additional field:

Semigroup
∆= {car : U;

product : car× car→ car;
axm : ∀x, y, z : car. (x·y)·z = x·(y·z)}

wherex · y stands forproduct(x, y).

5

3.2.1 Dependent Records as Very Dependent Func-
tions

We cannot define dependent record type using the ordinary
dependent function type, because the type of the fields de-
pends not only on labels, but also on values of other fields.

To represent dependent records Hickey [11] introduced
thevery dependent functiontype constructor:

{f | x : A → B[f, x]} (11)

HereA is the domain of the function type and the range
B[f, x] can depend on the argumentx and the functionf
itself. That is, type (11) refers to the type of all functionsg
with the domainA and the rangeB[g, a] on any argument
a ∈ A.

For instance,SemigroupSig can be represented as a
very dependent function type

SemigroupSig
∆= {r | l : Label → Field[r, l]} (12)

whereField[r, l] ∆=

if l = car then U else

if l = product then r.car× r.car→ r.car

else Top

Not every very dependent function type has a meaning.
For example the range of the function on argumenta cannot
depend onf(a) itself. For instance, the expression

{f | x : A → f(x)}
is not a well-formed type.

The type (11) is well-formed if there is some well-
founded order< on the domainA, and the range type
B[x, f] on x = a depends only on valuesf(b), where
b < a. The requirement of well-founded order makes the
definition of very-dependent functions to be very complex.
See [11] for more details.

3.2.2 Dependent Records as Dependent Intersection

By using dependent intersection we can avoid the complex
concept of very dependent functions. For example, we may
define

SemigroupSig
∆= self : {car : U} ∩

{product : self .car× self .car→ self .car}
Here self is a bound variable that is used to refer to the
record itself considered as a record of the type{car : U}.
This definition can be read as following:

r has typeSemigroupSig, when first, r is a
record with a fieldcar of the typeU, and sec-
ond,r is a record with a fieldproduct of the type
r.car× r.car→ r.car.

This definition of theSemigroupSig type is extension-
ally equal to (12), but it has two advantages. First, it is much
simpler. Second, dependent intersection allows us to extend
theSemigroupSig type to theSemigroup type by adding
an extra fieldaxm:

Semigroup
∆= self : SemigroupSig ∩

{axm : ∀x, y, z : self .car (x · y) · z = x · (y · z)}

wherex · y stands forself .product(x, y).
We can define a dependent record type of an arbitrary

length in this fashion as a dependent intersection of single-
field records associated to the left.

Note thatSemigroup can be also defined as an intersec-
tion associated to the right:Semigroup =

rc : {car : U} ∩(
rp : {product : rc.car× rc.car→ rc.car} ∩

{axm : ∀x, y, z : rc.car (x · y) · z = x · (y · z)})

wherex ·y stands forrp.product(x, y). Hererc andrp are
bound variables. Both of them refer to the record itself, but
rc has type{car : U} andrp has type{product : . . . }.
These two definitions are equal, because of associativity of
dependent intersection (Theorem12).

Note that Pollack [19] considered two types of depen-
dent records: left associating records and right associating
records. However, in our framework left and right associa-
tion are just two different ways of building the same type.
We will allow using both of them. Which one to chose is
the matter of taste.

4 The Record Calculus

4.1 The Formal Definitions

Now we are going to give the formal definitions of
records using dependent intersection.

4.1.1 Records

Elements of record types are defined as functions from la-
bels to the corresponding fields. We need three primitive
operations:

1. Empty record:{} ∆= λl.l
(We could pick any function as a definition of an empty
record.)

2. Field update/extension:

r.(x := a) ∆= (λl.if l = x then a else r l)

3. Field selection:r.x
∆= r x

6

Reduction rules
(r.x := a).x −→ a (r.y := b).x −→ r.x whenx 6= y

Single-field record
Γ ` A Type Γ ` x ∈ Label

Γ ` {x : A}Type

Γ ` a ∈ A Γ ` x ∈ Label

Γ ` r.x := a ∈ {x : A}
Γ ` r ∈ {x : A} Γ ` x 6= y ∈ Label

Γ ` (r.y := b) = r ∈ {x : A}
Γ ` r ∈ {x : A}

Γ ` r.x ∈ A

Independent record
Γ ` R1 Type Γ ` R2 Type

Γ ` {R1; R2}Type

Γ ` r ∈ R1 Γ ` r ∈ R2

Γ ` r ∈ {R1; R2}
Γ ` r ∈ {R1;R2}

Γ ` r ∈ R1 Γ ` r ∈ R2

Left associating record Right associating record
Γ ` R1 Type Γ; self : R1 ` R2[self] Type

Γ ` {R1; R2[self]}Type

Γ ` {x : A}Type Γ; x : A ` R[x] Type

Γ ` {x : x : A; R[x]}Type

Γ ` r ∈ R1 Γ ` r ∈ R2[r] Γ ` {R1; R2[self]}Type

Γ ` r ∈ {R1; R2[self]}
Γ ` r ∈ {x:A} Γ ` r ∈ R[r.x] Γ ` {x:x:A; R[x]}Type

Γ ` r ∈ {x:x:A; R[x]}
Γ ` r ∈ {R1; R2[self]}

Γ ` r ∈ R1 Γ ` r ∈ R2[r]
Γ ` r ∈ {x : x : A;R[x]}

Γ ` r.x ∈ A Γ ` r ∈ R[r.x]

Table 2. Inference rules for records

We can construct any record by these operations: we de-
fine{x1 = a1; . . . ; xn = an} as

{}.(x1 := a1).(x2 := a2).(xn := an)

4.1.2 Record Types

Single-field record type is defined as

{x : A} ∆= {x} → A

where{x} ∆= {l : Label | l = x ∈ Label} is a singleton
set.

Independent concatenation of record types is defined as

{R1; R2} ∆= R1 ∩R2

This definition is a partial case of the bellow definition of
left associating records whenR2 does not depend onself .

Left associating dependent concatenation of record
types is defined as

{self : R1; R2[self]} ∆= self : R1 ∩R2[self]

Syntactical RemarksHere variableself is bounded in
R2. When we use the name “self” for this variable, we can
use the shortening{R1; R2[self]} for this type. Further, we
will omit “ self .” in the body ofR2, e.g. we will write just

x for self .x, when such notation does not lead to misunder-
standing. We assume that this concatenation is a left asso-
ciative operation and we will omit inner braces. For exam-
ple, we will write{x : A;y : B[self];z : C[self]} instead of
{{{x : A}; {y : B[self]}}; {z : C[self]}}. Note that in this
expression there are two distinct bound variableself . First
one is bound inB and refers to the record itself as a record
of the type{x : A}. Secondself is bound inC, it also refers
to the same record, but it has type{x : A; y : B[self]}.

Right associating dependent concatenation.The above
definitions are enough to form any record type, but to com-
plete the picture we give the definition of right associating
record constructor:

{x : x : A; R[x]} ∆= self : {x : A} ∩R[self .x]

Syntactical RemarksHerex is a variable bound inR
that represents a fieldx. Note that we mayα-convert the
variablex, but not a labelx, e.g.,{x : x : A; R[x]} =
{y : x : A; R[y]}, but {x : x : A;R[x]} 6= {y : y :
A;R[y]}. We will usually use the same name for labels
and corresponding bound variables. This connection is right
associative, e.g.,{x : x : A; y : y : B[x]; z : C[x, y]} stands
for {x : x : A; {y : y : B[x]; {z : C[x, y]}}}.

4.2 The Rules

The basic rules of our record calculus are shown in Ta-
ble2.

7

Theorem 16 All the rules of Table2 are derivable from the
definitions given above.

From the reduction rules we get:

{x1 = a1; . . . ; xn = an}.xi −→ ai

when allxi’s are distinct.
We do not show the equality rules here, because in fact,

these rules repeat rules in Table2 and can be derived from
them using substitution rules in the NuPRL type theory. For
example, we can prove the following rules

Γ ` a = a′ ∈ A Γ ` x = x′ ∈ Label

Γ ` (r.x := a) = (r′.x′ := a′) ∈ {x : A}
Γ ` r = r′ ∈ R1 Γ ` r = r′ ∈ R2

Γ ` r = r′ ∈ {R1; R2}
In particular, we can prove that

{x = 0; y = 0; color = red} =
{x = 0; y = 0; color = green} ∈ {x : Z; y : Z}

We can also derive the following subtyping properties:

{R1; R2} ⊆ R1

{R1; R2} ⊆ R2

{R1; R2[self]} ⊆ R1

{x : x : A; R[x]} ⊆ {x : A}
` R1 ⊆ R′1 self : R1 ` R2[self] ⊆ R′2[self]

` {R1; R2[self]} ⊆ {R′1;R′2[self]}
` A ⊆ A′ x : A ` R[x] ⊆ R′[x]

` {x : x : A; R[x]} ⊆ {x : x : A′;R′[x]}
Further, we can establish two facts that states the equality

of left and right associating records.
{x : x : A; R[x]} =e {x : A;R[self .x]}
{R1; {x : x : A[self];R2[self , x]}} =e

{{R1; x : A[self]}; R2[self , self .x]}
For example, using these two equalities we can prove

that
{x : A; y : B[self .x]; z : C[self .x; self .y]} =e

{x : x : A; y : y : B[x]; z : C[x; y]}

4.3 Examples

4.3.1 Semigroup Example

Now we can define theSemigroupSig type in two ways:

{car : U; product : car× car→ car} or

{car : car : U; product : car × car → car}
Note that in the first definitioncar in the declaration of
product stands forself .car, and in the second definition
car is just a bound variable.

We can define Semigroup by extending
SemigroupSig:

{SemigroupSig; axm : ∀x, y, z : car (x·y)·z = x·(y·z)}

or as a right associating record:

{car : car : U;
product : product : car × car → car;
axm : ∀x, y, z : car (x · y) · z = x · (y · z)}

In the first casex · y stands forself .product(x, y) and in
the second case for justproduct(x, y).

4.3.2 Multiply Inheriting Example

A monoid is a semigroup with a unit. So,

MonoidSig
∆= {SemigroupSig; unit : car}

A monoid is an element ofMonoidSig which satisfies the
axiom of semigroups and an additional property of the unit.
That is,Monoid inherits fields from bothMonoidSig and
Semigroup. We can define theMonoid type as follows:

Monoid
∆= {{ MonoidSig; Semigroup;

unit axm : ∀x : car x · unit = x}
Note, that sinceMonoidSig andSemigroup shared the

fieldscar andproduct, these two fields present in the def-
inition of Monoid twice. This does not create problems,
since we allow repeating labels (Section3.1.2).

Now we have the following subtyping relations:

SemigroupSig ⊃ MonoidSig
∪ ∪

Semigroup ⊃ Monoid

4.3.3 Abstract Data Type

We can also represent abstract data types as dependent
records. Consider for example a data structurecollection
of element of typeA. This data structure consists of an ab-
stract typecar for collections of elements of the typeA, a
constant of this typeempty to construct an empty collec-
tion, and functionsmember s a to inquire if elementa is in
collections, andinsert s a to add elementa into collec-
tion s. These functions should satisfy certain properties that
guarantee their intended behavior:

1. The empty collection does not have elements.

2. insert s a has all element thats has and elementa
and nothing more.

8

A formal definition of the data structure of collections could
be written as a record:

Collection(A) ∆=
{car : U;
empty : car;
member : car→ A → Boolean;
insert : car→ A → car;
emp axm : ∀a : A a /∈ empty
ins axm : ∀s : car ∀a, b : A (member (insert s a) b)

⇐⇒ (member s b) ∨ (a = b ∈ A)}

5 Sets and Dependent Intersections

Set type constructor allows us to hide a part of a witness.

Example 17 Instead of definingSemigroup type as an
extension ofSemigroupSig type with an additional field
axm, we could define theSemigroup type as a subset of
SemigroupSig:

Semigroup
∆= {S : SemigroupSig |∀x, y, z : S.car . . . }

Now we will show that the set type constructor (which is
primitive in NuPRL) may be defined as a dependent inter-
section as well.

First, we assume that our type theory has theTop type,
that is a supertype of any other type. We will need only one
property of theTop type:T ∩ Top = T for any typeT . (In
NuPRLTop is defined as

⋂
x:V oid V oid, whereV oid is the

empty type).
Now consider the following type (squash operator):

[P] ∆= {x : Top | P}
[P] is an empty type whenP is false, and is equal toTop
whenP is true.

Theorem 18

{x : T | P [x]} =e x : T ∩ [P [x]] (13)

We can not take (13) as a definition of sets yet, because
we defined squash operator as a set. But actually the squash
operator is defined in MetaPRL’s version of the NuPRL
type theory as a primitive constructor and rules for the set
type depend on the squash operator. (See [17] for the rules
for the squash type and explanations why this is a primitive
type). Thus, we can take (13) as a definition.

Moreover, the squash operator could be defined using
other primitives. For example, one can define the squash
type using union:

[P] ∆=
⋃

x:P

Top.

(Union is a type that dual to intersection [18, 12]).

Remark In is interesting to note that in the presence of
Markov’s principle [14] there is an alternative way to define[P]:

[P] ∆
= ((P ≡> Void) ≡> Void)

whereA ≡> B
∆
=
T

x:A

B. We will not give any details here, since

it is beyond the scope of the paper.
We can also define sets withoutTop and squash type.

First, defineindependentsets:

{A|B} ∆=
⋃

x:B

A.

Then define set type:

{x : A|B[x]} ∆= x : A ∩ {A|B[x]}.

The Mystery of Notations It is very surprising that
braces{. . . } were used for sets and for records indepen-
dently for a long time. But now it turns out that sets and
records are almost the same thing, namely, dependent inter-
section! Compare the definitions for sets and records:

{x : T | P [x]} ∆= x : T ∩ [P [x]]
{self : R1; R2[self]} ∆= self : R1 ∩R2[self]

The only differences between them are that we use squash in
the first definition and write “|” for sets and “;” for records.

So, we will use the following definitions for records:

{self : R1 | R2[self]} ∆= {self : R1; [R2[self]]} =
self : R1 ∩ [R2[self]]
{x : x : A |R[x]} ∆= {x : x : A; [R[x]]} =

self : {x : A} ∩ [R[self .x]]
This gives us the right to use the shortening notations

as in Section4.1.2 to omit inner braces and “self ”. For
example, we can rewrite the definition of theSemigroup
type as

Semigroup
∆= {car : U;

product : car× car→ car |
∀x, y, z : car (x · y) · z = x · (y · z)}

Remark Note that we cannot define dependent intersec-
tion as a set:

x : A ∩B[x] ∆= {x : A | x ∈ B[x]}. (wrong!)

First of all, this set is not well-formed in the NuPRL type
theory (this set would be a well-formed type, only whenx ∈
B[x] is a type for allx ∈ A, but the membership is a well-
formed type in the NuPRL type theory, only when it is true).
Second, this set type does not have the expected equivalence
relation. Two elements are equal in this set type, when they
are equal just inA, but to be equal in the intersection they
must be equal in both typesA andB (see Example1).

9

Acknowledgments I am grateful to Robert Constable,
Aleksey Nogin and anonymous referees for their comments.

References

[1] Stuart F. Allen. A Non-type-theoretic Definition of
Martin-Löf’s Types. In D. Gries, editor,Proceedings
of the 2nd IEEE Symposium on Logic in Computer Sci-
ence, pages 215–224. IEEE Computer Society Press,
June 1987.

[2] Stuart F. Allen. A Non-Type-Theoretic Semantics for
Type-Theoretic Language. PhD thesis, Cornell Uni-
versity, 1987.

[3] Lennart Augustsson. Cayenne — a language with de-
pendent types. InInternational Conference on Func-
tional Programming, pages 239–250, 1998.

[4] Gustavo Betarte and Alvaro Tasistro. Extension of
Martin-Löf’s type theory with record types and sub-
typing. In Giovanni Sambin and Jan M. Smith, edi-
tors,Twenty-Five Years of Constructive Type Theory,
volume 36 ofOxford Logic Guides, pages 21–39, Ox-
ford, 1998. Clarendon Press.

[5] Robert L. Constable. Types in logic, mathematics
and programming. In Sam Buss, editor,Handbook of
Proof Theory, chapter 10. Elsevier Science, 1997.

[6] Robert L. Constable et al.Implementing Mathematics
with the NuPRL Development System. Prentice-Hall,
NJ, 1986.

[7] Robert L. Constable and Jason Hickey. NuPRL’s class
theory and its applications. In Friedrich L. Bauer
and Ralf Steinbrueggen, editors,Foundations of Se-
cure Computation, NATO ASI Series, Series F: Com-
puter & System Sciences, pages 91–116. IOS Press,
2000.

[8] Mario Coppo and Mariangiola Dezani-Ciancaglini.
An extension of the basic functionality theory for the
λ-calculus. Notre-Dame Journal of Formal Logic,
21(4):685–693, October 1980.

[9] Judicäel Courant. An applicative module calculus.
In TAPSOFT, Lectures Notes in Computer Science,
pages 622–636, Lille, France, April 1997. Springer-
Verlag.

[10] Robert Harper and Mark Lillibridge. A type-
theoretic approach to higher-order modules with shar-
ing. In Conference record of POPL ’94: 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 123–137, Portland, OR,
January 1994.

[11] Jason J. Hickey. Formal objects in type theory us-
ing very dependent types. InFoundations of Object
Oriented Languages 3, 1996. Available electronically
through theFOOL 3 home page.

[12] Jason J. Hickey.The MetaPRL Logical Programming
Environment. PhD thesis, Cornell University, Ithaca,
NY, January 2001.

[13] Jason J. Hickey, Aleksey Nogin, Alexei Kopylov, et al.
MetaPRL home page.http://metaprl.org/ .

[14] Alexei Kopylov and Aleksey Nogin. Markov’s princi-
ple for propositional type theory. In L. Fribourg, edi-
tor, Computer Science Logic, Proceedings of the 10th

Annual Conference of the EACSL, volume 2142 of
Lecture Notes in Computer Science, pages 570–584.
Springer-Verlag, 2001.

[15] Xavier Leroy. Manifest types, modules, and sepa-
rate compilation. InProceedings of the 21st ACM
SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 109–122. ACM Press,
1994.

[16] Per Martin-L̈of. Intuitionistic Type Theory, Studies
in Proof Theory, Lecture Notes. Bibliopolis, Napoli,
1984.

[17] Aleksey Nogin. Quotient types: A modular approach.
In Victor A. Carrẽno, Ćezar A. Mũnoz, and Sophiène
Tahar, editors,Proceedings of the 15th International
Conference on Theorem Proving in Higher Order Log-
ics (TPHOLs 2002), volume 2410 ofLecture Notes in
Computer Science, pages 263–280. Springer-Verlag,
2002.

[18] Benjamin C. Pierce. Programming with intersection
types, union types, and polymorphism. Technical Re-
port CMU-CS-91-106, Carnegie Mellon University,
February 1991.

[19] Robert Pollack. Dependently typed records for rep-
resenting mathematical structure. In J. Harrison and
M. Aagaard, editors,Theorem Proving in Higher Or-
der Logics: 13th International Conference, TPHOLs
2000, volume 1869 ofLecture Notes in Computer Sci-
ence, pages 461–478. Springer-Verlag, 2000.

[20] Garrel Pottinger. A type assignment for the strongly
normalizableλ-terms. In Jonathan P. Seldin and
J. Roger Hindley, editors,To H. B. Curry: Essays
in Combinatory Logic, Lambda Calculus and Formal-
ism, pages 561–577. Academic Press, London, 1980.

[21] John C. Reynolds. Design of the programming lan-
guage forsythe. Technical Report CMU-CS-96-146,
Carnegie Mellon University, June 1996.

10

http://www.cis.upenn.edu/~bcpierce/FOOL/FOOL3.html�
http://metaprl.org/�

