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Abstract T[z1,...,z,] for expressions that may contain free vari-
ablesz,, ..., x, (and probably some other free variables),
Records and dependent records are a powerful tool andTty,...,t,] for substitution terms;’s for all free oc-

for programming, representing mathematical concepts, and currences of;’s).
program verification. In the last decade several type sys- Martin-Lof’s type theory has the following judgments:

tems with records as primitive types were proposed. The  AType Ais a well-formed type
question is arose: whether it is possible to define record A=B A andB are (intentionally) equal types
type in existent type theories using standard types without a€ A a has typeA
introducing new primitives. a=be A aandbare equal as elements of tyde
It was known thaindependentecords can be defined in The NuPRL type theory also has subtyping relation. Al-

type theories with dependent functions or intersection. Onthough it is not essential for our work, we should mention
the other handdependentecords cannot be formed using that membership and subtyping in NuPRL are extensional.
standard types. Hickey introduced a complex notioven§ For example,A C B does not say anything about struc-
dependent function® represent dependent records. In the ture of these types, but only means thatife A then
current paper we extend Martinéf’s type theory with a = € B. As a result the type checking and subtyping are
simpler type constructatependent intersectipne., the in- undecidable. On the other hand, type equality=£ B) is
tersection otwo types, where the second type may dependintensional. We will used =. B for extensional equality:
on elements of the first one (not to be confused with thein-4 —_ g 2 (AC B)&(B C A).
tersection of a family of types). This new type constructor  The NuPRL type theory has also an intersection type.
allows us to define dependent records in a very simple way.The intersection of two typed and B is a new type con-
It also allows us to define the set type constructor. taining elements that are both i and B. For example,
Az.z + 1 is an element of the typ&Z — Z) N (N — N).
Two elements are considered to be equal as elements of the
1 Introduction type A N B if they are equal in both type4 and B.

1.1 Type Theory Example 1l LetA = N — NandB = Z~ — Z (where
7~ is a type of negative integers). L&t be \z.x andabs

We will use the NuPRL type theor[, which is an ex- be \z.|z|. Thenjd and abs are both elements of the type
tension of Martin-f’s type theory/L6]. Martin-Lof'stype AN B- Althoughid andabs are equal as elements of the type
theory allows dependent types. Thatis, type expression may¥ — I (because these two functions do not diffef\gnid
contain free variables ranging over arbitrary types. For ex- andabs are different as elements @~ — Z. Therefore,
ample, we can form an expressidi] = [0..z] which rep- i # abs € AN B.
resents an initial sequent of natural numbers. This expres-

sion is a type when: € N. (Some notations: we will use In Martin-Lof’s type theory types are first-class objects.

There is the universe typB that contain types that were
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in [13]. All proofs except the proof of the semantical The- treat the record type as a new primitive. In the current pa-
orem10 are machine-checked. We believe that most of our per we are interesting in the following natural questign:
results could be adapted to any type theory that allows bi-it possible to express the notion of records in usual type the-

nary intersection and dependent types. ories without record type as primitivesThis question is
especially interesting for pure mathematical proof systems.
1.2 Records As we saw records are a handy tool to represent algebraic

structures. On the other hand records do not seem to be
In general, records are tuples of labeled fields, wherethe basic mathematical concept that should be included in

each field may have its own type. In dependent recordsthe foundation of mathematics. Records should be rather
(or more formally dependently typed records) the type of defined in terms of more abstract mathematical concepts.
components may depend on values of the other components. It is known that it is possible to definemdependent
Since we have the type of typ&s values of record compo-  recordsin a sufficient powerful type theory that has depen-
nents may be types. This makes the notion of dependendent functions11] or intersection21]. On the other hand,
records very powerful. Dependent records may be used tothere is no known way to form dependent records in stan-
represent algebraic structures (such as groups) and moduledard Martin-Lof's type theory #]. However, Hickey [L1]
in programming languages like SML or Haskell (see for ex- showed thatlependent recordsan be formed in an exten-
ample B, /10]). sion of Martin-Lof’s type theory. Namely, he introduced a

new type ofvery dependent functionsThis type is pow-
Example 2 One can define the signature for ordered set as g(f| enough to express dependent records in a type the-
a dependent record type: ory and provides a mathematical foundation of dependent
records. Unfortunately the type of very dependent func-
tions is very complex itself. The rules and the semantics
This definition can be understood as an algebraic structure Probably is more complicated for this type than for depen-

as well as an interface of a module in a programing lan- dentrecords. The question is whether there is a simpler way
guage. to add dependent records to a type theory.

In this paper we extend the NuUPRL type theory with a
Example 3 The proposition-as-type principle allows us to simpler and easier to understand primitive type constructor,
add the property of ordered sets as a new component: dependent intersectiorThis is a natural generalization of
the standard intersection introduced®hdnd 20]. Depen-
dent intersection is an intersectiontwfo types, where the

whereOrd(t, Less) is a predicate stating thatess is a second type may depgnd on elements of the first one. This
transitive irreflexive relation or. Hereaxm is a new field type constructor is built by analogy to erendent products:
that defines the axiom of the algebraic structure of ordered &léments of dependent product are pairs where the type of
sets (or specification of the module typedSet). the second component may depend on the first component.
We will show that dependent intersection allows us to de-

Example 4 In type theories with equality, manifested fine the record type in a very simple way. Our definition of

OrdSetSig = {t : U;less : t — t — Bool}

OrdSet={t:U;less:t — t — Bool;axm : Ord(t,less)}

fields ([15]) may be also represented as specification. records is extensionally equal to Hickey’s ones, but is far
. simpler. Moreover our constructors (unlike Hickey's) allow
IntOrdSetSig = {t:U; less:t—t—Bool;mnf:t=7} us to extend record types. For example, having a definition

of monoids we can define groups by extending this defini-

is a signature where is bound to be the type of integers. tion rather than repeating the definition of monoid.

From a mathematical point of view the record type is
similar to the product type. The essential difference is 1-3 The Set Type Constructor
the subtyping property: we can extend a record type with
new fields and get a subtype of the original record type.  The NuPRL type theory has a primitive type constructor
E.g. OrdSet and IntOrdSetSig defined above are sub- for subset types. By definition, the set type : 7' | P[z]}
types ofOrdSetSig. The subtyping property is important is a subtype of’, which contains only such elementsof
in mathematics: we can apply all theorems about monoid’s T that satisfy property?[z] (see B]).
to smaller types such as groups. It is also essential in pro-
graming for inheritance and abstractions. Example 5 The type of natural numbers is definedMs=
Different type theories with records were proposed {n : Z|n > 0}. Without set types we would have to define
both for proof systems as well as for programming lan- N asn : Z x (n > 0). In this case we would not have the
guages (10, 15,19, 13, 4, [19] and others). These systems subtyping propertyN C Z.



It turns out that dependent intersection can be also used
to define a set type. This means that dependent intersection
not only adds support for dependent recordssintplifies
the overall the NUPRL type theory at the same time.

' AType ;2 : AF Blx] Type
'k (z: An Blx]) Type

r-A=A4 I'x: AF Blz] = B'[z]
2 Dependent Intersection I'F(zx:ANBzx)) = (x: AN Bx])

We extend the definition of intersectiohn B to a case

when typeB can depend on elements of tydeLet Abea L a€A T'Fac Bla] TFa:AnBfzjType

type andB|[z] be a type for alk: of type A. We define a new I'ta€(z: AN Blz))
type,dependent intersection AN B|x]. This type contains
all elements: from A such that is also inBJa]. I'Fa=d'€A TFa=d'eBla] T+ z:AnN Bz] Type

Remark 6 Do not confuseéhe dependent intersectiovith 'Fa=a € (z: AN Bz))
the intersection of a family of typ€s),. , B[z]. The latter
refers to an intersection of typds[z] for all z in A. The
difference between these two type constructors is similar to
the difference between dependent product x Blx] =
Y..aB[x] and the product of a family of typ&§,. 4 B[z] =
x: A — Blz]. Table 1. Rules for dependent intersection

Tyu:(x: AN Blz)); Az Ayy - Blz] F Clz,y]
Tiu: (z: AN Blx]); A F Clu, u]

Example 7 The ordinary binary intersection is just a spe-

cial case of a dependent intersection with a constant second

argumentANB=z:ANB. The Extension of the Semantics We introduce a new
term constructor for dependent intersection A N Bz].
This constructor bounds the variahlén Blx]. We extend
the semantics ol as follows.

Example 8 Let A = Z and B[z] = [0 .. z2-5]. Then
x : ANBlx]is asetofallintegers, such that< = < z2—5.

Two elements: anda’ are equal in the dependent inter-

sectionz: AN B[z] when they are equal both itand B|a). * The expression : AN Blz] is a well-formed type if

and only if A is a type andB[z] is a functional type

Example9Let A be {0} =N and B[f] be overz : A. That is, for anyr from A the expression
{1} — [0 .. f(0)], where {0} and {1} are types that Blz] should be a type and if = 2’ € A thenB|z] =
contain only one elemenb (and 1 respectively). Then Bl2'].

x:A N Blz] is a type of functiong that map0 to a natural

numbern, and mapl to a natural number; € [0 .. ngl. e The elements of th_e well-formed type AN B[z] are
Two such functiong and f’ are equal in this type, when such terms: thata is an element of both type and
first, f = f' € {0} — N, i.e. f(0) = f/(0), and second, Bla].

f=1e{l} =0.f(0)ie f(1) = (1) < f0)

2.1 Semantics

e Two elements: anda’ are equal in the well-formed
typez : AN Blz]iff a =a’ € Aanda = o’ € Bla).

e Two typesz : AN Blz] andz : A’ N B’[x] are equal
whenA andA’ are equal types and for allandy from
Aif x =y € AthenB[z] = B'[y].

We are going to give the formal semantics for dependent
intersection types based on the predicative PER semantics
for the NuPRL type theoryl] 2]. In the PER semantics
types are interpreted as partial equivalence relations (PERs
over terms. Partial equivalence relations are relations tha
transitive and symmetric, but not necessary reflexive.

According to P], to give the semantics for a type ex- The corresponding inference rules are shown in Table
pressionA we need to determine when this expression is
a well-formed type, define elements of this type, and spec-Theorem 10 All rules of Tablel are valid in the semantics
ify the partial equivalence relation on terms for this type given above.

(a = b € A). We should also give an equivalence relation
on types, i.e. determine when two types are equal. [Fee [ This theorem is proved by straightforward application of
for details. the semantics definition.

.2 The Inference Rules



Theorem 11 The following rules can be derived from the The main difference between record types and products
primitive rules of Tabléll in a type theory with the appro- A x---x A, is the that record type has thabtyping prop-
priate cut rule. erty. Given two records?,; and R, if any label declared in
R, as a field of typeA is also declared ik, as a field of

[Fa=d¢(z: AN Bz]) type B, such thatB C A, thenR, is subtype ofR;. In
F'Fa=a €A particular,

'Fa=d € (z: AN Blzx])
I'ka=d € Blg

{x1:A1;. . 5% An} C{x1 Ay xm s A ()

Theorem 12 Dependent intersection is associative, i.e. wherem < n.

xAﬂ(yB[;c]ﬂC[;uyD =, 2 ((LAI’TB[SL’])QC[Z,Z} Example 13 Let POintZ{XIZ;y:Z} and
ColorPoint = {x : Z; y:Z; color: Color}. Then

The formal proof is checked by the MetaPRL system. the record{x = 0;y = 0;color = red} is not only
We show here a sketch of a proof. An elemenhas  a ColorPoint, but it is also aPoint, so we can use
typea : AN (b : Bla] N Cla,b]) iff it has typesA and  this record wheneverPoint is expected. For example,
b: Blz] N C[x,b]. The latter is a case iff € B[z] andz € we can use it as an argument of the function of the type
Clz,z]. Onthe other hand; has typeib : (a: AN Bla])N  Point — T. Further the result of this function does not
C[ab, ab] iff x € (a AN B[a]) andz € C’[a:,m] The depend whether we ug{e; = 0;y = 0;color = red}
former means that € A andz € Blz]. Therefore  or {x = 0;y = 0;color = green}. Thatis, these two
z€a:AN(b: Bla]NCla,b]) iff 2 € Aandz € Blz] records are equal as elements of the typent, i.e.
andz € Clz,z] iff x € ab: (a : AN Bla]) N Clab, ab).

{x=0;y =0;color =red} =

3 Records {x=0;y =0;color =green} € {x: Z;y: Z}

Using subtyping one can model the private fields. Con-
sider a record- that has one “private” fiel& of the type
A and one “public” fieldy of the typeB. This record has
the type{x : A;y : B} Using subtyping property we can
conclude that it also has tyde : B}. Now we can con-
sider type{y : B} as a public interface for this record. A
user knows only that € {y : B}. Therefore he has ac-
. i cess to fieldy, but access to field would be type invalid
Records are collection of labeled fields. We use the fol- (i.e. untyped). Formally it meant that a function of the type
lowing notations for records: {y : B} — T can assess only the fiejcbn its argument (al-
though an argument of this function can have other fields).

We are going to define record types using dependent in-
tersection. In this section we informally describe what prop-
erties we are expecting from records. The formal definitions
are presented in Secti@i

3.1 Plain Records

= a3 = an} @ Further, records do not depend on field ordering. For
wherex,, . .., x, arelabelsanday, . . . a, are correspond- €xample,{x = 0;y = 1} should be equal t§y = 1;x =
ing fields. Usually labels have a string type, but generally 0}, moreover{x : A;y : B} and{y : B;x : A} should
speaking labels can be of any fixed typebel with a de- define the same type.

cidable equality. We will use therue type font for labels.
The selection operaterx is used to access record fields. 3.1.1 Records as Dependent Functions
If » is a record them.x is a field of this record labeles.

That is we expect the following reduction rule: Records may be considered as mappings from labels to the
corresponding fields. Therefore it is natural to define a
{x1 =a1;...;%, = an}.x; — a;. record type as a function type with the domdinbel (cf.

. _ [B]). Since the types of each field may vary, one should
Fields may have different types. If eaghhas typeA; use dependent function type (i.ELtype). LetField[l] be a
then the whole recordl has the type type of a field labeled For example, for the record typ)(

take
{x1: 415, 5%, 0 A} (2)

Also we want the natural typing rule for the field selec-
tion: for any record- of the type [2) we should be able to e
conclude that.x; € A;. if [=x, then A, else Top

Field(l] 2 l=x; then A; else



Then define the record type as the dependent functioritype: e.g., they do not recognize the expressfan: 4;x : B}
as a valid type. On the other hand, ] in the case when
A labels coincide the last field overlap the previous ones, e.g.,
{x1:A1;...;%, : Ap} = 12 Label — Field[ll. (4)  {x: A;x : B} is equal to{x : B}. In both these cases
many typing rules of the record calculus need some addi-
tional conditions that prohibits coincident labels. For ex-
ample, the subtyping relatio3) would be true only when

Now records may be defined as functions:

A
{(i=a;. sxp=an} = all labelsx; are distinct.
ALif [ =x; then a; else ) We will follow the definition [7) and allow repeated la-
L bels and assume that
if I=x, then a, {x: A4;x:B}={x: AN B}. 9
And selection is defined as application: This may look unusual, but this notation significantly sim-
plifies the rules of the record calculus, because we do not
rl 2 (6) need to worry about coincident labels. Moreover, this al-

low us to have multiply inheriting (see Sectidr8.2for an
One can see that these definitions meet the expectingexample). Note that the equatid®) holds also in[f].
properties mentioned above including subtyping property.
3.2 Dependent Records
3.1.2 Records as Intersections
We want to be able to represent abstract data types and
Using the above definitions we can prove that in case wheng|gebraic structures as records. For example, a semigroup
all x;’s are distinct labels may be considered as a record with the fietds (repre-
senting a carrier) angdroduct (representing a binary op-
{x oA sxn s And =e {x: A0 N {xy 0 A eration). The type Ogar is the universél. The type of
product should becar x car — car. The problem is
that the type obroduct depends on the value of the field
car. Therefore we cannot use plain record types to repre-
sent such structures.
We need dependent recor@(11,19]. In general a de-
pendent record type has the following form

This property provides us a simpler way to define records.
First, let us define the type of records with only one field.
We define it as a function type like we did it in the last sec-
tion, but for single-field records we do not need dependent
functions, so we may simplify the definition:

{x: A} 2 {x} - A (8) {x: A;y:Blx;z: C[x,y];...} (10)

That s, the type of a field in such records can depend on the
values of the previous fields.

The following main property show the intended meaning
of this type.

where{x} is the singleton subset of typeabel. Now we
may take7) and B) as a definition of an arbitrary record
type instead ofi4) and keep definitions5) and 6). This
way was used iridl] where{x : A} was a primitive type.
The record{x = a;y = b;z = ¢;...} has

Example 14 The record{x = 1;y = 2} by definition|B) is type [10) if and only if

a function that maps to 1 andy to 2. Therefore it has type
{x} - Z = {x: Z} and also has typéy} — Z = {y : Z}. a€A, beBla], ceClal]
Henceithastypéx : Z;y: Z} = {x: Z} n{y : Z}. ) ]
Example 15 Let SemigroupSig be the record type that
One can see that when all labels are distinct definitions represents the signature of semigroups:

4) and [7)+(8) are equivalent. That is, for any record ex-
“) 0+®) q 4 SemigroupSig 2 {car : U;product : carxcar — car}.

pression{z; : Ai;...;x, : Ay} Wherex; # z;, these two
definitions define two extensionally equal types. Semigroups are elements of SemigroupSig
However, definitions’d)+(8) differ from the traditional satisfying the associative axiom. This ax-

ones, in the case when labels coincide. Most record calculiom may be represented as an additional field:

prohibit repeating labels in the declaration of record types, Semigroup A {car : U;

1 We use the standard NuPRL's notations A — Blz] = [] Blz] product : car X car — car;

z:A . . )z = 1 (y-
for the type of functions that maps eache A to an element of the type axm : Yz, 4, 2 © car. (zy)2 = o(y-2)}
Bla). wherez - y stands foproduct(z, y).




3.2.1 Dependent Records as Very Dependent Func-
tions

We cannot define dependent record type using the ordinaryt

dependent function type, because the type of the fields de
pends not only on labels, but also on values of other fields.

To represent dependent records Hick&g] [introduced
thevery dependent functiagpe constructor:

{flz:A— Blfzl}

Here A is the domain of the function type and the range
B[f,x] can depend on the argumentand the functionf
itself. That is, typel11) refers to the type of all functiong
with the domainA and the range3]g, a] on any argument
a € A.

For instance,SemigroupSig can be represented as a
very dependent function type

(11)

SemigroupSig = {r|l: Label — Field[r,1]} (12)
whereField[r,l] £

if

if

l=car then U else
| = product then
else Top

r.car X r.car — r.car

Not every very dependent function type has a meaning.
For example the range of the function on argumecannot
depend ory (a) itself. For instance, the expression

{flz:A— flx)}

is not a well-formed type.

The type 1) is well-formed if there is some well-
founded order< on the domainA, and the range type
Blz, f] on x a depends only on valueg(b), where
b < a. The requirement of well-founded order makes the
definition of very-dependent functions to be very complex.
See|L1] for more details.

3.2.2 Dependent Records as Dependent Intersection

By using dependent intersection we can avoid the complex

This definition of theSemigroupSig type is extension-
ally equal to/L2), but it has two advantages. First, itis much
simpler. Second, dependent intersection allows us to extend
he SemigroupSig type to theSemigroup type by adding
an extra fieldaxm:

Semigroup 2 self : SemigroupSig N
{axm : Va,y,z : self .car (z-y)-z=2-(y-2)}

wherez - y stands forself .product(z, y).

We can define a dependent record type of an arbitrary
length in this fashion as a dependent intersection of single-
field records associated to the left.

Note thatSemigroup can be also defined as an intersec-
tion associated to the righfiemigroup =

{car: U} N
{product : r..car X r..car — r..car} N
{axm:Vz,y, 2z :recar (z-y)-z=x-(y-2)})

Te -

(rp -

wherez - y stands for,.product(z, y). Herer. andr, are
bound variables. Both of them refer to the record itself, but
r. has type{car : U} andr, has type{product : ... }.
These two definitions are equal, because of associativity of
dependent intersection (Theordr®).

Note that Pollack19] considered two types of depen-
dent records: left associating records and right associating
records. However, in our framework left and right associa-
tion are just two different ways of building the same type.
We will allow using both of them. Which one to chose is
the matter of taste.

4 The Record Calculus
4.1 The Formal Definitions

Now we are going to give the formal definitions of
records using dependent intersection.

4.1.1 Records

concept of very dependent functions. For example, we mayEIements of record types are defined as functions from la-

define

SemigroupSig 2 self : {car : U} N
{product : self.car X self.car — self.car}

Here self is a bound variable that is used to refer to the
record itself considered as a record of the typer : U}.
This definition can be read as following:

r has typeSemigroupSig, when first,r is a
record with a fieldcar of the typeU, and sec-
ond,r is a record with a fielgproduct of the type
r.car X r.car — r.car.

bels to the corresponding fields. We need three primitive
operations:

1. Empty record{} 2\
(We could pick any function as a definition of an empty
record.)

2. Field update/extension:

r.(x:=a) = (M.if l=x then a else

r 1)

. . A
3. Field selectionr.x = rx



Reduction rules
(rx:=a)x —a

Single-field record
' AType T x € Label I'Fae A TFxée Labe

(ry:=b).x — rxwhenx £y

I Thre{x:A} THFx#y¢€ Label 'kre{x: A}

' {x: A} Type 'Frx:=aec{x:A} 'F(ry:=0b)=re{x:A} F'rxe A
Independent record
'Ry Type T+ Ry, Type 'reR; I're Ry 'tk re{R1; R}

'+ {Ry; R2} Type I'kr e {Ry; Ra} F'FrekR; 'treR
Left associating record Right associating record
'+ Ry Type [;self : Ry - Ro[self] Type 't {x: A} Type ;2 : AF Rlx] Type

I {Ry; Ro[self]} Type
'kFre Ry THhreRyr] TF{Ry;Reself]} Type | T

'k {z:x: A; R[z]} Type
Fre{xA} TFreRrx] Tk {xxA;Rx]}Type

I'Fr € {Ry; Ro[self]}
'k r € {Ry; R[self]}

I'Fre{xxA; R[z]}
'kre{z:x: A R[z]}

I're Ry 'k r € Ry[r] r

Frxe A I'kr e R[rx]

Table 2. Inference rules for records

We can construct any record by these operations: we dex for self.x, when such notation does not lead to misunder-

fine{x; = a1;...;%, = a,} as

{}.(x1:=a1).(x2 := aa). ... (% :=ap)
4.1.2 Record Types
Single-field record type is defined as
{x: A} = {x}— A

where{x} = {l : Label | | = x € Label} is a singleton
set.

Independent concatenation of record types is defined as

{Rl;RQ} é R1 N RQ

This definition is a partial case of the bellow definition of
left associating records whe®, does not depend oself .

Left associating dependent concatenation of record
types is defined as

{self : Ry; Ra[self]} = self : Ry N Ralself]

Syntactical RemarksHere variableself is bounded in
R>. When we use the name “self” for this variable, we can
use the shorteninfR;; Ra[self]} for this type. Further, we
will omit “ self.” in the body of Ry, e.g. we will write just

standing. We assume that this concatenation is a left asso-
ciative operation and we will omit inner braces. For exam-
ple, we will write {x : A;y : B[self];z : C[self]} instead of
{{{zx: A};{y : B[self]}};{z : Clself]}}. Note that in this
expression there are two distinct bound variadali. First

one is bound inB and refers to the record itself as a record
of the type{x : A}. Secondelf is bound inC, it also refers

to the same record, but it has tyfe: A;y : B[self]}.

Right associating dependent concatenation. The above
definitions are enough to form any record type, but to com-
plete the picture we give the definition of right associating
record constructor:

{z:x: A; R[z]} = self : {x: A} N R[self x|

Syntactical RemarksHerex is a variable bound iR
that represents a field. Note that we mayy-convert the
variablex, but not a labek, e.g.,{z : x : A;R[z]} =
{y : x: ARy}, but{z : x : AR[z]} # {y : vy :
A; R[y]}. We will usually use the same name for labels
and corresponding bound variables. This connection is right
associative, e.g{x : x: A;y : y : Blz];z : C[z, y]} stands
for{z:x: A;{y:y: Blz];{z: C[z,y]}}}.

4.2 The Rules

The basic rules of our record calculus are shown in Ta-
blel2.



Theorem 16 All the rules of Tabl@ are derivable from the We can define Semigroup by extending
definitions given above. SemigroupSig:

From the reduction rules we get: {SemigroupSig;axm : Va,y, z : car (z-y)-z = a-(y-2)}

{x1=a1;...;xp = an}.x; — a; ) o
or as a right associating record:
when allx;’s are distinct.

We do not show the equality rules here, because in fact,{ ¢y : car : U
these rules repeat rules in Ta@and can be derived from
them using substitution rules in the NuPRL type theory. For
example, we can prove the following rules axm:Vr,y,z:car (v-y)-z=z-(y 2)}

i

product : product : car X car — car;

I'Fa=d €A I'Fx=x" € Label
Ik (rx:=a)=(r'x:=d)ec{x: A} In the first caser - y stands forself .product(z,y) and in
I'-r=+eR, I-r=r Ry the second case for jugtoduct(z,y).
Pkr=1r"€{R1;Re}
In particular, we can prove that

4.3.2 Multiply Inheriting Example

A monoid is a semigroup with a unit. So,
{x=0;y =0;color =red} = group

{x =0y = 0;color = green} € {x : Z;y : Z} MonoidSig 2 {SemigroupSig;unit : car}

We can also derive the following subtyping properties: o ) o
A monoid is an element aif onoidSig which satisfies the

{Ri; R} C Ry axiom of semigroups and an additional property of the unit.
{R1; R2} C Ry That is,Monoid inherits fields from both\/ onoidSig and
{Rq; Ro[self]} € Ry Semigroup. We can define tha/onoid type as follows:
{z:x: A Rla]} C {x: A} Monoid é{{ MonoidSig; Semigroup
- Ry CR) self : Ry F Ry[self] C RY[self] unit_axm:Vz:car x-unit=a}
= {R; Ra[self]} C {R}; Ry[self]} Note, that sincé/ onoidSig andSemigroup shared the
FACA x: Ak R[z] C R'[z] fieldscar andproduct, these two fields present in the def-
F{z:x: A;Rz]} C{z:x: A R'[z]} inition of Monoid twice. This does not create problems,

_ ~ since we allow repeating labels (Sect®i.2).
Further, we can establish two facts that states the equality  now we have the following subtyping relations:

of left and right associating records.

{z:x: A;Rlz]} =, {x: A; R[self x|} SemigroupSig O  MonoidSig
{Ry;{x : x : A[self]; Ra[self ,x]}} = U U
{{R1;x : A[self]}; Ra|self, self x|} Semigroup ) Monoud
For example, using these two equalities we can prove
that 4.3.3 Abstract Data Type
{x: A;y: Blself x|;z : C[self .x; self .y]} =
{v:x:Ay:y:Bla)iz: Clayy]} We can also represent abstract data types as dependent
records. Consider for example a data structtobection
4.3 Examples of element of typel. This data structure consists of an ab-
stract typecar for collections of elements of the typé, a
4.3.1 Semigroup Example constant of this typempty to construct an empty collec-
tion, and functionsember s a to inquire if element is in
Now we can define th8emigroupSig type in two ways: collections, andinsert s a to add element into collec-

tion s. These functions should satisfy certain properties that

{car : Uproduct : car x car — car} o guarantee their intended behavior:

{car : car : U;product : car x car — car}

) ) o _ ) 1. The empty collection does not have elements.
Note that in the first definitiorcar in the declaration of

product stands forself.car, and in the second definition 2. insert s a has all element that has and element
car is just a bound variable. and nothing more.



A formal definition of the data structure of collections could Remark In is interesting to note that in the presence of

be written as a record: Markov’s principle [L4] there is an alternative way to defifi@]:

Collection(A) 2 [P] £ (P => Void) => Void)

{car: U; A . ) ) .
empty : car; whereA => B = Irl B. We will not give any details here, since
member : car — A — Boolean; it is beyond the scope of the paper.
insert : car —» A — car; We can also define sets witholilbp and squash type.
emp_axm:Va: A a ¢ empty First, defineindependensets:
ins_axm:Vs:car Va,b: A (member (insert sa)b) A

<= (member sb)V (a=be€ A)} {A|B} = UA
z:B
5 Sets and Dependent Intersections Then define set type:
A
Set type constructor allows us to hide a part of a witness. {z: A|Blz]} = z: AN{A[B[z]}.

The Mystery of Notations It is very surprising that
braces{...} were used for sets and for records indepen-
dently for a long time. But now it turns out that sets and
records are almost the same thing, namely, dependent inter-
section! Compare the definitions for sets and records:

Example 17 Instead of definingSemigroup type as an

extension ofSemigroupSig type with an additional field

axm, we could define th&emigroup type as a subset of
SemigroupSig:

Semigroup = {S : SemigroupSig|Vx,y,z: S.car...}

{z:T| Plz]} = z:T N[P[z]]

‘Now we will show that the set type constructor (Whichis (.1 B,: Ry[self]} 2 self : Bi N Ro[self]
primitive in NuPRL) may be defined as a dependent inter-
section as well. The only differences between them are that we use squash in

First, we assume that our type theory hasThe type, the first defipition and write|'.' for ser_e}nd “ for records.
that is a supertype of any other type. We will need only one ~ So, we will use the following definitions for records:
property of thel'op type: T N Top = T for any typeT'. (In {self : Ry | Ra[self]} a {self : Ry;[Ra[self]]} =
NUPRLTop is defined a$),., ., Void, whereVoidisthe  self : Ry N[ Ry|self]]
empty type).. ) {z:x: A|Rz]} 2 {z:x: A[R[2]]} =

Now consider the following type (squash operator): self : {x : A} N [R]self x]]

This gives us the right to use the shortening notations
as in Sectiord.1.2to omit inner braces andsélf”. For
[P] is an empty type whet is false, and is equal tdop example, we can rewrite the definition of tlemigroup

[P] £ {«:Top| P}

whenP is true. type as
Theorem 18 Semigroup = {car: U;
{z:T|Plz]} =c x: TN[P[]] (13) product : car X car — car |
We can not takel(3) as a definition of sets yet, because Vi,y,zicar (z-y)-z=w-(y-2)}

we defined squash operator as a set. But actually the squash

operator is defined in MetaPRL's version of the NuPRL Remark Note that we cannot define dependent intersec-

type theory as a primitive constructor and rules for the settion as a set:

type depend on the squash operator. (3&gfpr the rules A

f)(;?the quuash type ar?d expla‘rjwations VE/hthti)s is a primitive v:ANBla] = {w: Az € Blz]}. (wrong!)

type). Thus, we can takd8) as a definition. First of all, this set is not well-formed in the NuPRL type
Moreover, the squash operator could be defined usingtheory (this set would be a well-formed type, only whea

other primitives. For example, one can define the squashB|x] is a type for allz € A, but the membership is a well-

type using union: formed type in the NuPRL type theory, only when itis true).
A Second, this set type does not have the expected equivalence
[P] = U Top. relation. Two elements are equal in this set type, when they
v P are equal just ir4, but to be equal in the intersection they
(Union is a type that dual to intersectiobg] [12]). must be equal in both typet and B (see Exampld).
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